The Road to Secure Cryptography:

Understanding and Preventing Common Misuses

Grazer Linuxtage 2023

Markus Schiffermuller

whoami

- Markus Schiffermuller

- Master Computer Science Student @ TU Graz
- Interested in Cryptography

- Like to play CTFs

- Team Captain of LosFuzzys

What are misuses?

What are misuses?

- Incorrect usage of

cryptographic algorithms from Crypto.Cipher import AES
- Confidentiality & Integrity & ¢y = p'sixteen byte key’
Authenticity cipher = AES.new(key, AES.MODE_EAX)

nonce = cipher.nonce
ciphertext, tag = cipher.encrypt_and_digest(data)

What are misuses?

- Cryptography is the bedrock of a secure
application

- Cryptographic misuse can happen easily

- Sometimes hard to instantly spot

Your RSA Security Is On Its Last
Legs. What’s Next?

AES-256 Encryption Keys Cracked
Wirelessly Using Inexpensive Kit

Dutch researchers have demonstrated that secret AES encryption keys can be extracted

using recording equipment that costs under 200 euros

Matthew Broersma, June 26, 2017, 10:33 am | Updated on 5 November 2019, 18:40

l.

Invent my own crypto

Invent my own crypto

- Why not invent our own crypto systems?
- Security by obscurity

rsa decryption
plaintext = power mod(ciphertext, key.d, key.n)
rsa encryption
ciphertext = power mod(plaintext, key.e, key.n)

Never invent your own crypto

“Anyone, from the most clueless amateur to the
best cryptographer, can create an algorithm that
he himself can’t break. It's not even hard. What

IS hard is creating an algorithm that no one else
can break, even after years of analysis.”

- Bruce Schneier

Never invent your own crypto
This happened

1 billion units sold

- CRYPTO-1

- Own version of a stream cipher
- BROKEN

[1] Garcia, Flavio D., et al. "Dismantling MIFARE Classic." ESORICS. Vol. 5283. 2008.

Never invent your own crypto

London

Boston Hackers Crack London Tube's
Ticketing System

South Korea

B Dutch security researchers rode the London Underground free
eIJ | ng for a day after easily using an ordinary laptop to clone the
Australia "smartcards" commuters use to pay fares, a hack that highlights

a serious security flaw because similar cards provide access to
thousands of government offices, hospitals and schools. There
are more than 17 million of the [...]

[2] https://www.engadget.com/2008-03-14-oyster-cards-vulnerable-to-rfid-hack-lots-of-other-systems-too.html

x.

Hard coded keys

Hard coded keys and credentials

- Just save keys and credentials in
strings.xm|

- Our application is closed source anyway what
should happen?

Don't use hard coded keys

- Retrieving hard coded keys might not be difficult

- Attack can gain access to confidential data

- “It's common to find them [keys] hardcoded into the
application as a string or byte array in the code or in
an asset file such as strings.xml” -
developer.android.com

Don't use hard coded keys

& Android application:

". - 100K+ Downloads

public class Security {

private static byte[] INITIAL KEY VECTOR = {lo, 8, 34,

private static final String KEY = "D:<Q..";

Don't use hard coded keys

& Android application:

". - 100K+ Downloads

public static String PUBLIC MODULUS = "bfod...";

public static String PUBLIC EXPONENT = "1d";
public static String PRIVATE EXPONENT = "5c69...";

® Do | really
need nonces?

Using no nonces

Plaintext Plaintext Plaintext
CITTTTTTTIITTIT] CLTTTTTTITTTTd CLTTTTTITTIqTT]
Key block cpher Key block (:|p_her Key block CIp_her
encryption encryption encryption
CITTTTTTTITTTT] CLTTTTTTTTITTT CLTTTTTTTTITTTd
Ciphertext Ciphertext Ciphertext

Electronic Codebook (ECB) mode encryption

Don't use ECB mode

- Encryption using Nonce

Don't use ECB mode

Don't use ECB mode

Reusing nonces

b 4

Reusing Nonces

- Generating secure random number is expensive
- Why not just reuse the ones we have?

//Declaring a global const nonce
5231903233190

const int nonce

Never reuse Nonces

- Never ever reuse nonces
- Best case: severely reduced security

- Worst case: Entirely broken scheme

Randomness is easy right?

Randomness is easy right?

MY How do | get a random number in C?

Randomness is easy right?

MS How do I get a random number in C?

@ In C, you can get a random number by using the “rand()* function provided by the ¢9 &P
standard library. Here's an example:

(2 () Copy code

O{

srand(time(NULL));

random_number = rand() % H

srand(time(NULL));

printf(, random_number);

int r = rand();

In this example, we first include the necessary headers (“stdio.h", “stdlib.h*, and
“time.h’). We then use the “srand()" function to seed the random number
generator with the current time. This ensures that we get a different sequence of
random numbers each time we run the program.

We then use the “rand()" function to generate a random number between 0 and
99. To get a random number within a specific range, you can use the modulus
operator (*%*) to get the remainder of the random number divided by the range

size. and then add the minimum value of the ranae.

Randomness is easy right?

&) Github Copilot

// Seed randoms and generate nonce

Be careful with randomness

- Bad randomness = broken encryption

- Predictable session tokens

- Look for: Suitable for cryptographic use
- /dev/urandom

Be careful with randomness
This happened

- CVE-2016-10180

- D-Link DWR-932B router

- Generating the WPS PIN using
time seeding

o -

' Use "well established”
° Cryptographic Algorithms

Use “well established” Cryptographic
Algorithms

- Bigger Keys = worse performance

- Data encryption standard (DES) for encryption
- MD?5 for hashing

128-bit should be fine for RSA right?

Never use weak or outdated cryptographic
algorithms

- Don't use depreciated algorithms (SHA1, MD5, DES)
- Elliptic Curves greatly improve speed
- Select a secure key size (check NIST recommendation)

[3] https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions
[4] https://www.ibm.com/docs/en/zos/2.4.0?topic=2-algorithms-key-sizes

https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions
https://www.ibm.com/docs/en/zos/2.4.0?topic=2-algorithms-key-sizes

Never use weak or outdated cryptographic
algorithms

'Zli' Evaluation of Cryptography Usage
‘ Android Applications

- At least one cryptographic misuse: 87.8%
- Most common issue: Weak cryptography

[5] Chatzikonstantinou, Alexia, et al. "Evaluation of cryptography usage in android applications." EAl Endorsed Transactions on
Security and Safety 3.9 (2016): 83-90.

IN

Encryption is sufficient

Encryption is sufficient

- Once the messages are securely encrypted we
are done right?
- Confidentiality is ensured, what more to do?

Authentication encryption is important

AES-CTR

Nonce Counter
c59bcf35.. 00000000

'

block cipher
encryption

Key ——

Plaintext ——
CIITITITITITI

CITTTTTITTIT 111
Ciphertext

Nonce Counter
c59bcf35.. 00000000

'

block cipher
encryption

Key —

Ciphertext ———
CLITTITTTTT T11

CIITITITTIT 111
Plaintext

Authenticated encryption is important

Confidentiality and Integrity are both important
Ensure integrity of messages

Use Message Authentication Codes (MAC)
Use AES-GCM for example

[5]https://www.ibm.com/docs/sk/zos/2.4.0?topic=SSLTBW_2.4.0/com.ibm.tcp.ipsec.ipsec.help.doc/ipsec/IpsecDataOffer Encrypt.
CB_DataOfferAuthentication.html

https://www.ibm.com/docs/sk/zos/2.4.0?topic=SSLTBW_2.4.0/com.ibm.tcp.ipsec.ipsec.help.doc/ipsec/IpsecDataOffer_Encrypt.CB_DataOfferAuthentication.html
https://www.ibm.com/docs/sk/zos/2.4.0?topic=SSLTBW_2.4.0/com.ibm.tcp.ipsec.ipsec.help.doc/ipsec/IpsecDataOffer_Encrypt.CB_DataOfferAuthentication.html

Recap

Recap

- Never invent your own crypto

- Don't use hard coded keys

- Avoid ECB mode

- Never reuse nonces/IVs

- Be careful when choosing PRNGs

- Make sure the algorithms in place are secure
- Use encryption with authentication

How to prevent

- Use existing libraries
- Be mindful when using crypto libraries

Thank you

