
The Road to Secure Cryptography:
Understanding and Preventing Common Misuses

Grazer Linuxtage 2023
Markus Schiffermüller

whoami

- Markus Schiffermüller

- Master Computer Science Student @TU Graz

- Interested in Cryptography

- Like to play CTFs

- Team Captain of LosFuzzys

What are misuses?

- Incorrect usage of
cryptographic algorithms

- Confidentiality & Integrity &
Authenticity

from Crypto.Cipher import AES

key = b'Sixteen byte key'
cipher = AES.new(key, AES.MODE_EAX)

nonce = cipher.nonce
ciphertext, tag = cipher.encrypt_and_digest(data)

What are misuses?

What are misuses?

- Cryptography is the bedrock of a secure
application

- Cryptographic misuse can happen easily
- Sometimes hard to instantly spot

Invent my own crypto

Invent my own crypto

- Why not invent our own crypto systems?
- Security by obscurity

rsa decryption
plaintext = power_mod(ciphertext, key.d, key.n)
rsa encryption
ciphertext = power_mod(plaintext, key.e, key.n)

Never invent your own crypto

“Anyone, from the most clueless amateur to the
best cryptographer, can create an algorithm that
he himself can’t break. It's not even hard. What
is hard is creating an algorithm that no one else
can break, even after years of analysis.”

- Bruce Schneier

Never invent your own crypto

- 1 billion units sold
- CRYPTO-1
- Own version of a stream cipher
- BROKEN

[1] Garcia, Flavio D., et al. "Dismantling MIFARE Classic." ESORICS. Vol. 5283. 2008.

This happened

[2] https://www.engadget.com/2008-03-14-oyster-cards-vulnerable-to-rfid-hack-lots-of-other-systems-too.html

- London
- Boston
- South Korea
- Beijing
- Australia
- …

Never invent your own crypto

Hard coded keys

Hard coded keys and credentials

- Just save keys and credentials in
strings.xml

- Our application is closed source anyway what
should happen?

- Retrieving hard coded keys might not be difficult
- Attack can gain access to confidential data
- “It's common to find them [keys] hardcoded into the

application as a string or byte array in the code or in
an asset file such as strings.xml” -
developer.android.com

Don't use hard coded keys

public class Security {

 private static byte[] INITIAL_KEY_VECTOR = {16, 8, 34, ...};

 private static final String KEY = "D:<Q…";

 ...

}

Android application:

- 100K+ Downloads

Don't use hard coded keys

public static String PUBLIC_MODULUS = "bf6d...";

public static String PUBLIC_EXPONENT = "1d";

public static String PRIVATE_EXPONENT = "5c69...";

Don't use hard coded keys

Android application:

- 100K+ Downloads

Do I really
need nonces?

Using no nonces

Don't use ECB mode
- Encryption using Nonce

Don't use ECB mode

Don't use ECB mode

Reusing nonces

Reusing Nonces
- Generating secure random number is expensive
- Why not just reuse the ones we have?

//Declaring a global const nonce

const int nonce = 5231903233190;

Never reuse Nonces

- Never ever reuse nonces
- Best case: severely reduced security
- Worst case: Entirely broken scheme

Randomness is easy right?

Randomness is easy right?

Randomness is easy right?

 #include <time.h>

#include <stdlib.h>

srand(time(NULL));

int r = rand();

Randomness is easy right?

Github Copilot:

Be careful with randomness

- Bad randomness = broken encryption
- Predictable session tokens
- Look for: Suitable for cryptographic use
- /dev/urandom

Be careful with randomness

- CVE-2016-10180
- D-Link DWR-932B router
- Generating the WPS PIN using

time seeding

This happened

Use “well established”
Cryptographic Algorithms

Use “well established” Cryptographic
Algorithms

- Bigger Keys = worse performance
- Data encryption standard (DES) for encryption
- MD5 for hashing
- 128-bit should be fine for RSA right?

Never use weak or outdated cryptographic
algorithms
- Don't use depreciated algorithms (SHA1, MD5, DES)
- Elliptic Curves greatly improve speed
- Select a secure key size (check NIST recommendation)

[3] https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions
[4] https://www.ibm.com/docs/en/zos/2.4.0?topic=2-algorithms-key-sizes

https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions
https://www.ibm.com/docs/en/zos/2.4.0?topic=2-algorithms-key-sizes

Evaluation of Cryptography Usage in
Android Applications

- At least one cryptographic misuse: 87.8%
- Most common issue: Weak cryptography

[5] Chatzikonstantinou, Alexia, et al. "Evaluation of cryptography usage in android applications." EAI Endorsed Transactions on
Security and Safety 3.9 (2016): 83-90.

Never use weak or outdated cryptographic
algorithms

Encryption is sufficient

- Once the messages are securely encrypted we
are done right?

- Confidentiality is ensured, what more to do?

Encryption is sufficient

Authentication encryption is important

AES-CTR

- Confidentiality and Integrity are both important
- Ensure integrity of messages
- Use Message Authentication Codes (MAC)
- Use AES-GCM for example

[5]https://www.ibm.com/docs/sk/zos/2.4.0?topic=SSLTBW_2.4.0/com.ibm.tcp.ipsec.ipsec.help.doc/ipsec/IpsecDataOffer_Encrypt.
CB_DataOfferAuthentication.html

Authenticated encryption is important

https://www.ibm.com/docs/sk/zos/2.4.0?topic=SSLTBW_2.4.0/com.ibm.tcp.ipsec.ipsec.help.doc/ipsec/IpsecDataOffer_Encrypt.CB_DataOfferAuthentication.html
https://www.ibm.com/docs/sk/zos/2.4.0?topic=SSLTBW_2.4.0/com.ibm.tcp.ipsec.ipsec.help.doc/ipsec/IpsecDataOffer_Encrypt.CB_DataOfferAuthentication.html

Recap

Recap

- Never invent your own crypto
- Don't use hard coded keys
- Avoid ECB mode
- Never reuse nonces/IVs
- Be careful when choosing PRNGs
- Make sure the algorithms in place are secure
- Use encryption with authentication

How to prevent

- Use existing libraries
- Be mindful when using crypto libraries

Thank you

